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A solution is proposed for the problem of synthesizing the control of a manipulator with deformable members [1-5].¢ The 
motion of the system is described using Routh's equation [6, 7]. The variables are the generalized coordinates, velocities 
and momenta of the mechanical system under consideration. A control law which depends only on the generalized coordinates 
and momenta of the system (but not on the generalized velocities) is constructed. Its special feature is that the variables on 
which it depends are slow. This will be the case when the stiffness of the members of the manipulator is sufficiently high and the 
generalized velocities contain high-frequency components. © 1998 Elsevier Science Ltd. All rights reserved. 

The control law of a robot manipulator usually has the form of feedback involving the generalized 
coordinates and velocities of the mechanical system in question [1-5]. If the stiffness of the members 
is high, the generalized velocities of the manipulator turn out to be fast variables (they contain high- 
frequency components). The process of measuring such signals and generating an appropriate control 
signal involves difficulties, due to inertia and other non-ideal properties of the devices in the manipulator 
control system [8-10]. 

The idea underlying the solution is to make allowance for the fact that the stresses in the cross-sections 
of deformable members are internal forces of the mechanical system, and therefore the system has state 
variables which are not fast, even if the internal forces are quite high. Such a variable is, for example, 
the velocity of the centre of mass of a member of the manipulator. The momenta of the mechanical 
system are also slow variables. That is why Routh's equations are used in this paper to describe the 
manipulator dynamics [6, 7]. 

Another feature of this paper is the need to construct a universal manipulator control law, i.e. a 
uniform control law that will guarantee stability of a whole class of regimes rather than of a single given 
manipulator regime. That is to say, we are essentially dealing with stabilization of practically all possible 
(feasible) modes of motion compatible with the dynamics of the controlled object [8-10]. 

1. D Y N A M I C S  O F  T H E  C O N T R O L L E D  O B J E C T  

Each deformable member of the manipulator is considered to be a system (chain) ofm (m t> 1) absolu- 
tely rigid bodies linked bym - 1 joints (see Fig. 1) [2, 3, 5]. It is assumed that the deformations are concen- 
trated in the joints. The joints are general in form and may describe bending, stretching, torsion and other 
forms of deformation in the manipulator member. The number m - 1 of partitions of the member is 
arbitrary, as is the choice of the position and shape of the cross-sections. Hence, such a finite-dimensional 
dynamic model enables one to make adequate allowance for the principal dynamical properties of an 
elastic manipulator. A comparison has been made between finite-dimensional dynamical models of 
mechanical systems of the type described, on the one hand, and distributed models, on the other. 

As generalized coordinates of the manipulator we take the states tO1 . . . .  , tOn of the joints between 
its members and the states Vn+I, • • •, ~n of the formal joints introduced to describe the concentrated 
deformations of the manipulator members 

q = (qj ..... q~v) = (to, Y), to = (tol ..... tOn), • = (~,+1 ..... WN) (1.1) 

tPrikl. Mat. Mekh. Vol. 62, No. 3, pp. 413--423, 1998. 
~tSee also MATYUKHIN, V. I., The motion of an elastic member of a manipulator as an absolutely rigid body. In Abstracts 

of Lectures, leith International Seminar on Stability and Oscillations of Non-linear Control Systems. Institute of Control Problems, 
Moscow, 1996. 
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n.z ~ o  / ~÷m / 

F i g .  1. 

where N = n m  and there are no deformations when ~n+l = ¥n+2 = • • • = ~I/N = 0 (see Fig. 1). In what 
follows, it will be assumed that the subscripts t~ and [3 take the values 1, 2 , . . . ,  n; i , j ,  k take the values 
n + 1, n + 2 , . . . ,  N and r, s take the values 1, 2 . . . . .  N. 

Let T denote the kinetic energy of the manipulator 

T = ~Y~  ars(q)(lrq s (1.2) 
r , $  

and let Qr + Mr be the generalized forces corresponding to (1.1). The components Qr = Qr(q, (1, t) may 
describe, in particular, the weights of the manipulator members. To simplify matters, let us assume that 
Q~(q, (1, t), ars(q) and that a~l(q) are bounded together with their derivatives 

IQs(q, il, t) ~ C, la ,s(q) l~ C ..... C=const, 0<C<**  (1.3) 

This assumption is non-restrictive in the dynamics of mechanical systems [1-10]. 
Let Ma denote the controlling forces and let Mi denote forces determined by the stresses in the 

deformable manipulator members; it is assumed that 

I M a I ~< Hot, H a = const > 0 (1.4) 

I Mi I <<- Hi, Hi = const > 0 (1.5) 

The quantities Ma have the sense of control forces (controls) produced in each inter-member joint by 
the manipulator drives. To describe the physical restrictions on the possible values of these controls, 
we have introduced inequalities (1.4). The stresses Mi correspond to the deformations ~i of the manipu- 
lator members. Inequalities (1.5) have been introduced to describe the physical restrictions on the 
magnitudes of the admissible stresses, for eample, to keep the deformations of the manipulator members 
within the elastic range. 

The generalized forces Mi describing the stresses in the system are given in the following form [11-13] 

M i = g ~ ( ¥ ,  i f / )  = - k i ~  i - k i~ , i¥  i, ki,• i = c o n s t  > 0 (1.6) 

The t e rms  -ki~.i~l i in (1.6) may have the physical meaning of the bending moment of elastic forces while 
the t e r m s  --ki¥ i enable us to allow for the viscosity property of the deformation process and describe 
the corresponding forces of internal friction [11-13]. 

The dynamics of the mechanical system we have introduced may be described by Lagrange equations 
of the second kind [1-10] 

d OT 3T 
- -  = Qr(q, gl, t) + M r (1.7) 

dt Oilr Oqr 

For high stiffness of the manipulator members (ki >> 1 in (1.6)), the generalized forces Mi in system 
(1.7) and the accelerations qr may be large, and the generalized velocities qr will be fast variables. This 
will follow from system (1.7), written in fully developed form [1-10]. 

In what follows, therefore, we will change from the generalized velocities qa = t0a to new variables: 
generalized momenta of the mechanical system (1.7) [9, 10] 

~T 
= ~, a~(p~ + ~, aai~i (1.8) 
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and we will use the equivalent Routh equations [6, 7] 

DR DR 
,bu = - 0(,% + Qa + Mc`, (~% = bPa (1.9) 

d DR DR 

dt 0~1 i 0¥ i = -Qi - Mi ,  R = Xc̀ Paqa - r 

(R denotes the Routh function). The stresses Mi do not occur in the first group of Eqs (1.9). This means 
thatpc` are slow variables (i.e. are not fast variables). 

2. F O R M U L A T I O N  OF THE P R O B L E M  

The objective of the control of system (1.9) is that each coordinate qr should vary in accordance with 
a certain given programme q*(t), that is [1-5, 8-10] 

qr = qr(t) (2.1) 

The objective of the control of the manipulator must correspond to its dynamics, that is, the functions 
(2.1) must satisfy the equations of motion (1.9) and conditions (1.4) and (1.5), i.e. [8-10] 

• , DR* , . ,  DR* 
pc, = aq~¢, + Q~ + M,L '¢c` = 0p,~ 

d ~R* ~R* 
- - -  Q*-M*;  IM*(t)I<~H~ (2.2) 

The functions M* = M*(t) in Eqs (2.2) are regarded as continuous controls corresponding to q = q*(t), 
M*(t) = -ki(~*(t) + 7q.¥*(t). Denote the set of all such functions q = q*(t) by *. We also define 

• ~ =(q*( t )eO:  IMr(t)l~ < H r -rl ,  Iq*(t)l~< c, Iq*(t)l~ < c) (2.3) 

where ~ and c are constants, 0 < ~ ~< Hr, 0 < c < ~ (henceforth, for simplicity, c = C). 
The reason we have introduced ~ is to simplify the proofs of propositions in what follows. The 

constant 11 in (2.3) may be chosen to be small and c large. In that case the set ~ essentially contains 
all possible motions of the manipulator in which the velocities are essentially bounded and the forces 
Mr obey constraints (1.4) and (1.5). In that sense, the sets • and *~ are fairly similar to one another. 

In what follows, then, we will be dealing with a fairly large subset ~ of ~, which may be regarded 
as the set of all possible motions of the manipulator as a dynamical system (1.9), (1.4) and (1.5) [8-10]. 

The problem of synthesizing control laws for system (1.9) will be understood as that of constructing 
a feedback functional of the form 

Mc` = Mh(fp, p,(p ,p ,t) (2.4) 

which does not contain fast variables of system (1.9). The feedback (2.4) must be such that, under the 
substitution q* ~ ~*, the new motion $* = ~*(t) of the closed-loop system (1.9), (2.4) will be stable 
provided that ~*(t) ~ *~. Such a control law (2.4) will be called a universal law [6--8]. The problem is 
to construct a universal c0ntrol law (2.4) that will ensure the stability of practically all possible motions 
q*(t) ~ tb~ of system (1.9). 

3. SYNTHESIS  OF A C O N T R O L  LAW 

Recalling a well-known scheme [8-10] for the control of a mechanical system (1.9), we will assume 
that the control law (2.4) has, say, the following form (the general form is (3.4)) 

M a = -Hc` sign[pc` - p~ (t) + Z,~ (tp~ - tp~ (t))] (3.1) 

The asterisk denotes the values of the Routh variablesp~ and tpa for a given motion q = q*(t) of system 



382 V, I. Matyukhin 

(1.9). Using (1.6) and (3.1), we write system (1.9) in the form 

, , DR 
iga = - 3(p-'---~DR + Qa _ Ha sign(pa _ pct + ~,ct((pa _(pa)), ~Pa = 3p a 

d DR DR 
- -  = --Oi + ki(~l i + ~ ' i¥ i )  (3.2) 

dt igftl i 19¥ i 

Theorem. Suppose that the various quantities in system (3.2) satisfy the inequalities 

~" <~ ~'a <~ A ,  ~ <~ L i <~ A ,  k i >I K (3.3) 

where K, X, A, ~, A are certain positive constants. Then any motion q*(t) in *~ is an exponentially stable 
motion of system (3.2). 

The proof will be given in Sections 4--6. 
This theorem rigorously shows that, in principle, it is possible to control the motion of an elastic 

manipulator using its generalized momenta as variables. The main property of these variables is that 
they do not contain high-frequency components, that might appear for high stiffness of the manipulator. 
It thus becomes feasible to use ordinary drives and sensors as the actuators and measuring devices of 
the manipulator. The control law (3.1) is universal, since, according to the theorem, it guarantees the 
stability of any motion in cI~, that is, of practically all possible (realizable) motions of the control object 
under consideration [8-10]. 

The theorem will also hold in the general case, when the control law (3.1) and Eqs (1.6) describing 
the stresses in the system have the following general form 

Met = -Ha  sign(Pa - PcL + fa((Pa - (Pa)), Mi = Fi(~i - f i ( ~ i ) )  (3.4) 

As to the functions fa, Fi andfi in (3.4), the following weak assumptions will suffice. The system 

Pa - P a  +fa((Pa -q)a) = 0, ~t i + ~ ( q i )  = 0 (3.5) 

has an exponentially stable motion q* = (~0*(t), ~*(t)) (compare the special case (4.1) below); the 
functious/a satisfy inequalities of type (3.3) 

- A x  <~ - fa (x )  ~ -Lx  for x > 0, -Lx ~< -fa(x) ~< -Ax for x < 0 (3.6) 

with analogous inequalities for Fi and fi. Thus, instead of the restrictive assumption (1.6) concerning 
the linear structure of the stresses in the manipulator members, we have fairly weak general assumptions 
(3.6) concerning their properties. 

The problem under consideration recalls the class of problems dealing with the stability of positions 
of equilibrium of mechanical systems [14]. Previously obtained conditions [14] have been replaced by 
the stronger conditions (3.3) in order to investigate more general (not necessarily conservative) systems, 
and also to guarantee stability of a wide range of motions of the manipulator (not necessarily corres- 
ponding to a position of equilibrium). 

A remark is in order here as to the production of the signals Pa used in control law (3.1). It is not 
known how to measure these signals directly in the general case. However, the quantities Pa may be 
expressed as functions (1.8)pa = Pa(q, gl), whose arguments q,, qr are signals that are usually accessible 
to measurement. The main special feature of the function pa = Pa(q, (1) is that it does not contain high- 
frequency components, despite the fact that the arguments qr may contain them. 

This property may be made the basis of a method for the special processing (estimation or observation) 
of measurable signals (q,, q~) with a view to improving the accuracy of the output signalpa = Pa(q, ¢1). 
In that connection, the following detail is worthy of attention. The coefficients an = ars(q) in expression 
(1.8) for the momenta may vary, depending on what scheme is chosen to describe the deformation of 
elastic members. The following factors are arbitrary here: the number m of elements into which the 
manipulator member is divided, the size of the elements and the positions and types of joints linking 
the elements. This arbitrariness may also be used in order to improve the accuracy with which the output 
signalpa = Pa(q, ~1) is estimated. 
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4. O U T L I N E  OF P R O O F  OF THE T H E O R E M  

Following the approach described in [8--10], let us consider the motion of system (3.2) in a regime 
of the form 

P ~  ----" P a  -- ~ a ( t P c t  -- ~ a  ), ~l i  = ¥ i  -- ~ ' i ( ~ i  -- ~ i  ) (4.1) 

(in the general case, Eqs (4.1) have the form (3.5)). System (4.1), expressed in terms of differences 
= qr -- q*~ and taking (1.8) into consideration, has the form 

~, a a ~  =-~'a~a -r~, (aar -a~r)(t* r + ~ a~i~.i~ i, ~i =-~'i~i (4.2) 
r i 

Lemma. The motion ~ = 0 of system (4.2) will be exponentially stable ifq*(t) ~ ~ and the following 
of inequalities (3.3) are satisfied 

7~ ~ L~ (4.3) 

The proof will be given in Section 5. 
The main idea is thus to show that system (3.2) indeed admits of a motion (4.1). In that case, it will 

follow from the stability of the motion q = q*(t) of system (4.1) that the motion q = q*(t) in system 
(3.2) is also stable--the conclusion of the theorem. 

We will show that system (3.2) can be reduced to a motion (4.1). To that end, we will write (3.2) in 
the following developed form [6, 7] 

Pa = Oa - Ha sign(pa - Pa + ~'a(tPa - tPa )) 

(Pa = ~ baf~(q)(P~ - ~ i ~i(q)fgi)  (4.4) 

Z Aij~j =Oi - E  Pa~lai - k i (~ i  +~'iVi) 
i a 

where 

aR 
Oa = O~ - aq---~' Oi = - Z  p ,Y~ - E A~d j + Q, - a_R_R (4.5) 

a j 19qi 

AO" ( q) = aij (q) - ~, bal}a~ja~j (4.6) 
a,~ 

det a ~ O, a=lla~(q)ll ,  b=llb~(q)l l=a -j (4.7) 

Tai = E bal}(q)al}i(q) (4.8) 

We introduce the deviations of the motion of system (4.4) from regime (4.1) 

Z a = @ a  +~'a~a, Xi=~i+~'i~i, APa =Pa-p~( t ) ,  ~ r=qr -q~( t )  (4.9) 

On this basis we introduce a general measure for the deviation of the motion of system (4.4) from regime 
(4.1), characterized by functions of the form 

n=!  Z ! Z 2 a Xa, G = 2 i.j Ao'(q)ziZJ (4.10) 

H and G are the components of a Lyapunov vector function [15]; they are positive-definite functions 
of the variables ga and g/, respectively. For G this follows from the inequalities [6, 7] 

rj2~, X 2 <~ G<~ r2~, X2i (4.11) 
i i 
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where 0 < rl ~< r2 < 0% as follows from conditions (1.3). 
The main thrust of the proof involves verification of the equalities H = 0 and G = 0. Hence, taking 

(4.10) and (4.11) into account, one immediately derives the equalities X/= 0. This means that system 
(4.4) is moving in mode (4.1). The motion q = q* of system (4.1) is (by the lemma) exponentially stable. 
Hence it follows that the motion q = q* of system (4.4) is also exponentially stable, which proves the 
theorem. The equalities FI = 0 and G = 0 are proved by constructing the derivatives of the Lyapunov 
functions H, G along trajectories of system (4.4) and showing that they decrease to zero on motions of 
system (4.4) (Section 6). 

5. PROOF OF THE LEMMA 

The lemma follows from the stability of the motion ~ - 0 of system (4.2) with respect to the variable 
= 0. To prove this fact we use the Lyapunov function 

1 
g = -~cr~13 aal3 (q)~a~ (5.1) 

which is a positive-definite function of ~ [6, 7]. 
The motion of system (4.4) will be considered in the domain 

Iqrl<~c, litrl~ c (5.2) 

which is analogous to (2.3). It follows from (1.3) that the following inequalities, analogous to (4.11), 
hold in (5.2) [6-10] 

p12~-- ~2 ~g~p22X ~2, Pi=const, O<pl ~P2 <oo (5.3) 
~t (x 

The expression for the derivative ofg along trajectories of system (4.2) implies the limit 

oa~<_~, X~2a+~ I~alFl~ Itiallll~ltl+ ~ IAaarllq:l+Y. la~lX,~l,] (5.4) 
a a LZ~ r i 

X~X,~ <-^, E ~ x i ~ X  (5.5) 

It follows from (1.3) that 

laai(q)l~C' ~aai =a°a(q* +~)-aai(q*)=~s ~ s  ~s ~s  Cl~.,I 

Taking (2.3), (5.2) and (5.6) into consideration, we deduce from (5.4) that 

g ~-Z X~ + S[ ½SCNc+(S +-g)CNc+'gCX] 

s : X  5:X i jl 
a J 

(5.6) 

(5.7) 

It follows from (5.7) that 

p2 P~ L P~ 2 j 

where we have used the inequalities Z~ ~2a ~< -g/p~, I ~ I < q(g)/P] derived from (5.3). 
Let ~ be a number defining the initial data for system (4.4) 

t ~ . , . ( o ) t ~  a ,  I ~ s ( o ) l ~  a 

(5.8) 

(5.9) 

Then, using (4.2), we deduce from (5.8) that 
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-~-'~g2 +n~fg[n~fg 3 P, L P, +cw +x)x, 5exp(-Xit)] (5.10) 

Using the condition (see condition (4.3) of the lemma) 

-Xt =- X-X-X-~+ 3--( n )ZcNc<O (5.11) 
P2 2kPl ) 

we can write inequality (5.10) in the form 

~ ' [ d  (2~')  + ~LI .~" - b cxp( -~/)] -- 0 ( 5 . 1 2 )  

The motion g(t) = 0 of system (5.12) (in the class of non-negative absolutely continuous functions 
g(t)) is exponentially stable [8--10]. Hence, in view of (5.3), we deduce that the motion ~ --- 0 of system 
(4.2) is also exponentially stable with respect to the variable ~ which proves the lemma. 

6. PROOF OF THE THEOREM 

The derivatives of the Lyapunov functions I-I and G along trajectories of system (4.4) (which is 
equivalent to (3.2)) take the form 

rI = X z . ( A o .  +,aMix + x .~ . )  
a 

. . . . .  

G' = ~i" Zi Aikgk + - AAikqi + AOi - ~,ix APa'?ai + (6.1) 

--ZOt PaA~[ixil"Agi] + Zk Ai'~"~' } 

These formulae are established taking (4.9) and the identities (2.2) of type (4.4) into consideration. 
System (6.1) can be rewritten as follows: 

rI=X xix(ao~ +x~ix)+X z.AM~ 
IX 0t 

¢' = Z Xi Aij, Xk /2  + - AAikqk + AOi + Xix ~,a~a7~,'+ (6.2) 

-Y'a (Oix+Ma)AT°i]+~ Aik~q,~k}+~ i Xi&ll4i+C; 

where 

or=-Z X/Z (~ba +~ct~a)7~" (6.3) 
i Ix 

and the equations Pa = Oa + Ma of system (4.4) have been taken into consideration. 
The right-hand sides of system (6.2) will now be majorized in the domain (5.2), taking (2.3) into 

consideration. This is done using the following estimates of type (5.6) 

• "* ~<: * _ ~  1,4ikl< CNc, Iqkl-~C, I)'~.I~C, IO~ + MaI~ C + Ha, IAikl<~ C 

AO a <- C ( n ' ~  + ( N - n)~[-G + S(I + A)+'S(I +-A )) 

which follow from the fact that the functions in (6.20 are smooth (this in turn follows from (1.3) by way 
of (4.5)--(4.8)). The relations 7~AMa ~< -TI[ Za I, x/AMi = -kix 2, which follow from (1.6), (3.1), (4.9) and 
(2.3), have been taken into account. Relations (4.10) and inequalities (4.11) are used. This enables us, 
starting from system (6.2), to construct a system of inequalities 
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l:I ~< " ~ l  al ~ + a 2 ~ + a2S + a 3~} - rl 2"f~~ (6.4) 

G ~ .f-G{bm.fH + b2 a[-G + b3S + b4"S}-G-~ +o 

where a i, b i >t 0 are constants, 0 < k ~< ki. 
If the Lyapunov functions (5.1) are used, as well as the formula z = Zk~/2, system (6.4) 

becomes 

I:I ~< -.~-~{lq-~ - a 1 - ~  - A2-v/-G - A3 N/-g - A4 afz} 

G , g l r i _ ( ~ _  B2 )G w B3R-F B4z.F 0 (6.5) 

where use has been made of  the estimates S ~ ~l(g)n/pl, ;S ~ 4(2z)(N - n) and of 2,~(rlG) ~< 11 + G. 
The following inequalities hold for the derivatives g and ~ along trajectories of system (4.4) 

,<~{-~,-~2+Cn~-~--g[2nNcS~g+(Nc+A)'S]l+~, l 
pl L 3 P~ _lJ ~.~ 2a  13Za 

= - E  ~'k~ + E ~k~k ~< -2LZ + E ~ ~ (6.6) 
k k k rt 

where we have used the estimate (5.8) for g along trajectories of (4.4) in the motion of the system in 
mode (4.1), where Za - 0, Z~ - 0. In view of (6.6), system (6.5) becomes 

I:I ~< -x/ -H{n '~  - A 1 ~ - A 2"~/-G - A33/-g - A4"~fz} 

G <~ BIr I - ( -~ -  B2 )G + B3 g + B4z + o 

g<~ CIH-(~,glp 2 -C3)g+C4z, z~  D2G-(2~-D4)z (6.7) 

We will further show that the motion H = 0, G = 0, g = 0, z = 0 of system (6.7) is exponentially 
stable. This will imply the exponential stability of the motion q -- q*(t) of system (4.4), as claimed by 
the theorem. Below we will show that: 

(i) for small initial deviations 

rI(o) ~< 8, G(0) ~< 8, g(0) ~< 5, z(0) ~< 5 (6.8) 

the variable H of system (6.7) will reach zero in a fairly short time t = tl and then remain equal to 
zero; 

(ii) the motion H = 0, G = 0, g = 0, z = 0 of system (6.7) with o = 0 is exponentially stable (the 
parameters k, E, A, Z.-, A- may be chosen accordingly); 

(iii) system (6.7) will also be exponentially stable when o ~ 0 (when the properties of this term are 
taken into account), whence it will follow that the motion q = q*(t) is exponentially stable. 

Accordingly, let us consider the motion (6.7) in the domain 

H~<St,  G~<51, g<~51, z~<51 (6.9) 

where 81 satisfies the inequality 

1 1 . ~ - a l N / g l - A 2 ~ I - A 3 ~ I - A 4 ~ I  >~'q-f212 

Then system (6.7) may be written in the form 

I:I<~-.~/-HrI.~/2, G~<y, g~<y, ~<y, y=const~>0 

The function 11 in (6.11) will satisfy the following relations [8--10] 

(6.10) 

(6.11) 
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t, = 4 n4-n-  / 

for t<~tl, Ha/-H-~-O for t > t  1 (6.•2) 

In view of (6.12), we can rewrite system (6.11) in the form 

H~-H--~ ~ H3/-H--~, G ( t ) ~  G(0)+Tt, g ( t ) ~  g(O)+ Tt .... (6.13) 

Choose 6 in (6.8) to satisfy the condition G(2tl) ~< 61, • • •, that is, the condition ~ + 2X4~/6/(rl'~2)) ~< ~i 1. 
Then the values of  the variables G, g, and z will not leave domain (6.9) for t ~< 2t 1. This means that 
when t ~< 2t 1 system (6.11) will move along trajectories of the original system (6.7). 

We will show that the motion FI = 0, G = 0, g = 0, z = 0 of system (6.7) will continue to remain in 
domain (6.9); even more, it will be exponentially stable. To that end, we write system (6.7) for t = t 1 + 0, 
using (6.12), as follows: 

l'I--O, G ~ - ( k l r ~ - B 2 ) G + B 3 g + B 4 z + c r  

~, <~ - (~g  / p22 - C3)g + C4 z, ~ ~ D2G - (2~ - O4)z (6.14) 

We now consider the sum 

Y = Ix2G+ixg+z, IX =const > 0 (6.15) 

and its derivative along trajectories of system (6.14) 

Y <~ IX2(-(k l r 2 - B2)G+ B3 g + B4z +O)+ 

+IX(-()t,g I p~ - C3)g + C4 z) + D2G - (2~ - D4)z (6.16) 

With the parameters k, ~,, A, K A suitably chosen, the coefficients of system (6.16) will satisfy the 
inequalities 

Ix2(k / r2 2 _ B 2 ) > D 2, IX(~, / p2 _ C 3) > [.t2B3, 2 ~ -  D 4 > IXC 4 + IX2B4 (6.17) 

This may be verified, say, for A = 2~., ~, = 2X, ~ > 4D 4, L/p 2 - C3(2~) = C3(2~) and sufficiently large 
~t and 1/K. In view of (6.17), inequality (6.16) may be written as 

<~ - E Y  + ~t2o, E = const > 0 (6.18) 

that is, we have verified the stability of system (6.18) (which implies that of  system (6.8)) for 
o = 0 .  

We will now show that system (6.18) will also be stable for o # 0. To that end, we consider the general 
solution of inequality (6.18) 

t 
Y(t) ~< [ Y(t t) + exp(E(x - t I ))I(1:)1~ +f  E exp(E('c- t, ))l('r)dx] exp(-E( t  - t I )) 

tl 

where, due to (6.3) 

tl tl 

(6.•9) 

(6.20) 

For t ~> t I we have the identity 

I(t) =- O, t >>- tl (6.21) 

which may be verified by integration by parts, with d~ = Y'a (6pa + ~a~)dx. One also takes into account 
that the derivatives of  the functions ~/and 2~ are bounded, due to conditions (1.3), in the domain (2.3), 
(5.2), and that ~ ---- 0 for t t> tl, which follows from (6.12). 

In view of (6.21), we can rewrite inequality (6.19) as follows: 



388 V.I. Matyukhin 

Y(t) <~ Y ( t t ) e x p ( - E ( t -  tl)), t >~ t I (6.22) 

Hence it follows that the motion H = 0, G = 0, g = 0, z = 0 of system (6.7) is exponentially stable, that 
is, the motion q = q*( t )  of the original system (4.4) is exponentially stable. This completes the proof 
of the theorem. 
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